

skip navigation 	Telerik Document Processing Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop

Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework

View all products

	Overview
	Docs & Support
	Pricing

	
	 Shopping cart
	
 Your Account 	Account Overview
	Your Licenses
	Downloads
	Support Center
	Forum Profile
	Payment Methods
	Edit Profile
	Log out

	 Login
	 Contact Us
	Try now

	
	

close mobile menu

 	
 Search in Documentation

	
 Search in Knowledge Base

	
 Search in API Reference

 	

 API Reference

	

 Available for: UI for ASP.NET MVC | UI for ASP.NET AJAX | UI for Blazor | UI for WPF | UI for WinForms | UI for Silverlight | UI for Xamarin | UI for WinUI | UI for ASP.NET Core | UI for .NET MAUI

 Libraries / RadPdfProcessing / Concepts

 New to Telerik Document Processing?
 Download free 30-day trial

 Colors and Color Spaces

The ColorBase abstract class is used to encapsulate colors in different color spaces. The classes which inherit from ColorBase:

	SimpleColor

	PatternColor

SimpleColor

The abstract SimpleColor represents colors, which are defined with color components. The following classes inherit SimpleColor:

RgbColor

Represents an ARGB (alpha, red, green, blue) color. The RgbColor class exposes the following properties:

	
A: The alpha component value.
	
R: The red component value.
	
G: The green component value.
	
B: The blue component value.

Example 1 demonstrates how you can create an RgbColor and assign it as Fill of a Path element.

Example 1: Create RgbColor
RgbColor magenta = new RgbColor(255, 0, 255);
Path path = new Path();
path.Fill = magenta;

PatternColor

The abstract PatternColor class represents colors, which are defined with the pattern color space. A pattern color paints with a pattern rather than a single color. PatternColor is inherited by the Gradient and TilingBase classes.

Gradient

Gradient provides a smooth transition between colors across an area which is painted. The gradient color is represented by the Gradient abstract class which exposes the following properties:

	StartPoint: A Point object representing the starting two-dimensional coordinates of the gradient.

	EndPoint: A Point object representing the ending two-dimensional coordinates of the gradient.

	ExtendBefore: Specifies whether to extend the gradient beyond the starting point.

	ExtendAfter: Specifies whether to extend the gradient beyond the ending point.

	Background: SimpleColor object representing the background color.

	GradientStops: A collection of GradientStop objects representing the gradient stops collection.

The Gradient class is inherited by the following classes:

	
LinearGradient: Defines a color blend along a line between two points, optionally extended beyond the boundary points by continuing the boundary colors.

Example 2 shows how to create a LinearGradient and assign it as the FillColor of a FixedContentEditor.

Example 2: Create LinearGradient

 FixedContentEditor containerEditor = new FixedContentEditor(container);

 LinearGradient linearGradient = new LinearGradient(new Point(0, 0), new Point(30, 30));
 linearGradient.GradientStops.Add(new GradientStop(new RgbColor(0, 207, 0), 0));
 linearGradient.GradientStops.Add(new GradientStop(new RgbColor(0, 102, 204), 1));

 containerEditor.GraphicProperties.FillColor = linearGradient;
 containerEditor.DrawRectangle(new Rect(10, 10, 48, 29));

The gradient created in Example 2 is shown in Figure 1.

Figure 1: LinearGradient

	
RadialGradient: Defines a blend between two circles, optionally extended beyond the boundary circles by continuing the boundary colors. The RadialGradient class exposes the following properties:

	
StartRadius: Decimal number determining the radius of the starting circle.
	
EndRadius: Decimal number determining the radius of the ending circle.

Example 3 demonstrates how to create a RadialGradient and assing it as the FillColor of a FixedContentEditor.

Example 3: Create RadialGradient

 FixedContentEditor containerEditor = new FixedContentEditor(container);

 RadialGradient radialGradient = new RadialGradient(new Point(40, 40), new Point(40, 40), 0, 30);
 radialGradient.GradientStops.Add(new GradientStop(new RgbColor(0, 207, 0), 0));
 radialGradient.GradientStops.Add(new GradientStop(new RgbColor(0, 102, 204), 1));

 containerEditor.GraphicProperties.FillColor = radialGradient;
 containerEditor.DrawEllipse(new Point(40, 40), 30, 30);

The result from Example 3 is shown in Figure 2.

Figure 2: RadialGradient

Tiling Pattern

A tiling pattern consists of a small graphical figure called a pattern cell. Painting with the pattern replicates the cell at fixed horizontal and vertical intervals to fill an area. The tiling pattern is represented by the TilingBase abstract class, which exposes the following properties:

	BoundingBox: Property of type Rect representing the dimensions pattern cell.

	VerticalSpacing: Decimal number determining the vertical spacing between pattern cells.

	HorizontalSpacing: Decimal number determining the horizontal spacing between pattern cells.

	Size: The size of the bounding box.

	Content: The collection of content elements inside a pattern cell.

	Position: The position of the tiling pattern.

	
TilingType: Property of type TilingType that represents the tiling type.The possible values are:

	
AllowSmallDistortion: Pattern cells are spaces consistently. To achieve this, the pattern cell might be slightly distorted by making small adjustments to the HorizontalSpacing and VerticalSpacing.
	
NoDistortion: Pattern cells are not distorted, but the spacing between pattern cells may vary. This achieves the spacing requested by HorizontalSpacing and VerticalSpacing on average, but not necessarily for each individual pattern cell.
	
FastTiling: Pattern cells are spaced consistently as in AllowSmallDistortion type but with additional distortion permitted to enable a more efficient painting.

The TilingBase class is inherited from the following classes:

	Tiling: Represents a tiling pattern.

	UncoloredTiling: Represents an uncolored tiling pattern. This type of tiling patterns can be defined with some specific content, and then reused with a different color of their content. It exposes two additional properties - Tiling which represents the tiling to be used and Color representing the color of the content of the specified tiling.

Since the TilingBase class implements the IContentRootElement interface like RadFixedPage, the content of the tiling can be modified using the FixedContentEditor class. Example 4 shows how a tiling pattern can be created.

Example 4: Create tiling
FixedContentEditor containerEditor = new FixedContentEditor(container);

Tiling tiling = new Tiling(new Rect(0, 0, 10, 10));
FixedContentEditor tilingEditor = new FixedContentEditor(tiling);
tilingEditor.GraphicProperties.IsStroked = false;
tilingEditor.GraphicProperties.FillColor = new RgbColor(128, 28, 43);
tilingEditor.DrawRectangle(new Rect(2, 2, 5, 7));

containerEditor.GraphicProperties.FillColor = tiling;
containerEditor.DrawCircle(new Point(30, 30), 20);

The tiling created in Example 4 is shown in Figure 3.

Figure 3: Tiling

See Also

	Path
	FixedContentEditor

 In this article

 Related articles

 Not finding the help you need?

 Contact Support

	

 Improve this article

 Getting Started

 	Getting Started

 Support Resources

 	Documentation
	GitHub SDK Repository

 Community

 	Forums
	Blogs
	Document Processing Feedback Portal

 Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates.
 All Rights Reserved.

 Progress, Telerik, and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

 	Terms of Use
	Privacy Center
	Security Center
	Trademarks
	License Agreements
	Code of Conduct
	Doc Copyright

 DO NOT SELL MY PERSONAL INFORMATION

