

skip navigation 	Telerik UI for ASP.NET MVC Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop

Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework

View all products

	Overview
	Demos
	Roadmap 	What's New
	Roadmap
	Release History

	Docs & Support Support and Learning
	Support and Learning Hub
	Docs
	Demos
	Virtual Classroom
	Forums
	Videos
	Blogs
	Submit a Ticket

Productivity and Design Tools
	ThemeBuilder
	Design System Documentation
	Visual Studio Extensions
	Figma Kits
	Embedded Reporting

	Pricing

	
	 Shopping cart
	
 Your Account 	Account Overview
	Your Licenses
	Downloads
	Support Center
	Forum Profile
	Payment Methods
	Edit Profile
	Log out

	 Login
	 Contact Us
	Try now

	
	

close mobile menu

 	
 Search in Documentation

	
 Search in Knowledge Base

	
 Search in API Reference

 Components / Data Management / Grid / Export

 New to Telerik UI for ASP.NET MVC?
 Download free 30-day trial

 PDF Export

The UI for ASP.NET MVC Grid component provides a built-in PDF export functionality.

For a runnable example, refer to the demo on exporting the Grid to PDF.

With regard to its PDF export, the Grid enables you to:

	Export all its data to PDF
	Fit content to paper size
	Specify page templates
	Use server proxy
	Save files on the server
	Embed Unicode characters

Getting Started

To enable PDF export:

	Include the corresponding toolbar command and set the export settings.

	Toolbar configuration
	PDF export configuration

	Include the Pako Deflate library in the page to enable compression.

Starting with v2023.3.1115 the Pako library is no longer distributed with the rest of the Kendo UI for jQuery scripts. You must use one of the official distribution channels such as unpkg instead.

To initiate PDF export, press the Toolbar button or use the Grid client-side API and call the saveAsPdf method.

	By default, the Grid exports the current page of the data with sorting, filtering, grouping, and aggregates applied.
	The Grid uses the current column order, visibility, and dimensions to generate the PDF file.

The following example demonstrates how to enable the PDF export functionality of the Grid.

 <!-- Load Pako Deflate library to enable PDF compression -->
 <script src="https://unpkg.com/pako/dist/pako_deflate.min.js"></script>
 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .FileName("Kendo UI Grid Export.pdf")
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Exporting All Pages

By default, the Grid exports only the current page of data. To export all pages, use the AllPages() method.

When the AllPages() method is used with and server paging (Ajax binding default), the Grid will make a "read" request for all data. If the data items are too many, the browser may become unresponsive. In such cases, use server-side export.

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .AllPages()
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Fitting Content to Paper Size

By default, the paper size of the exported document is determined by the size of the Grid on the screen. This implies that the document can contain pages with different dimensions if the size of the Grid is not uniform for each data page. For detailed information on the conversion from screen to document units, refer to the Kendo UI for jQuery article on dimensions and CSS units.

You can specify a paper size that will be applied to the whole document. The content will be scaled to fit the specified paper size. The automatic scale factor can be overridden, for example, to make room for additional page elements. To use all available space, the Grid will:

	Adjust the column widths to fill the page so try to avoid setting width on all columns.
	Vary the number of rows for each page, placing page breaks where appropriate.
	Omit the toolbar and the pager.

	To fit the Grid content to the paper size, all records have to be rendered at once.
	The exact maximum number of exportable rows will vary depending on the browser, system resources, template complexity, and other factors.
	A good practice is to verify your own worst-case scenarios in each browser you intend to support.

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .AllPages()
 .Landscape()
 .PaperSize("A4")
 .Scale(0.75)
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Specifying Page Templates

The Grid allows you to specify a page TemplateId and use the template to position the content, add headers, footers, and other elements. The styling of the exported document is done by using CSS. During the PDF export, the template is positioned in a container with the specified paper size.

To use a page template, you have to set the paper size.

The Grid supports the following page template variables:

	pageNumber
	
totalPages

 <style>
 body {
 font-family: "DejaVu Serif";
 font-size: 12px;
 }

 .page-template {
 position: absolute;
 width: 100%;
 height: 100%;
 top: 0;
 left: 0;
 }

 .page-template .header {
 position: absolute;
 top: 30px;
 left: 30px;
 right: 30px;

 border-bottom: 1px solid #888;

 text-align: center;
 font-size: 18px;
 }

 .page-template .footer {
 position: absolute;
 bottom: 30px;
 left: 30px;
 right: 30px;
 }
 </style>

 <script type="x/kendo-template" id="page-template">
 <div class="page-template">
 <div class="header">
 Acme Inc.
 </div>
 <div class="footer">
 <div style="float: right">Page #: pageNum # of #: totalPages #</div>
 </div>
 </div>
 </script>

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .AllPages()
 .PaperSize("A4")
 .Margin("2cm", "1cm", "1cm", "1cm")
 .Landscape()
 .RepeatHeaders()
 .Scale(0.75)
 .TemplateId("page-template")
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Using Server Proxy

Internet Explorer 9 and Safari do not support the option for saving a file and require the implementation of a server proxy. To specify the server proxy URL, use the ProxyURL() method.

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .AllPages()
 .ProxyURL("/MyProxy")
 .Landscape()
 .PaperSize("A4")
 .Scale(0.75)
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Saving Files on the Server

To send the generated file to a remote service, use the ProxyURL() and ForceProxy() methods. If the proxy returns 204 No Content, no Save As... dialog will appear on the client.

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .ForceProxy(true)
 .ProxyURL("/Pdf_Export_Save")
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

 [HttpPost]
 public ActionResult Pdf_Export_Save(string contentType, string base64, string fileName)
 {
 var fileContents = Convert.FromBase64String(base64);
 return File(fileContents, contentType, fileName);
 }

Embedding Unicode Characters

The default fonts in PDF files do not provide Unicode support. To support international characters, you have to embed an external font. For more information on the supported Deja Vu font family as part of the Kendo UI distributions and other fonts, refer to the Kendo UI for jQuery article on custom fonts and PDF.

The following example demonstrates how to handle custom fonts.

 <style>
 /*
 Use the DejaVu Sans font for display and embedding in the PDF file.
 The standard PDF fonts have no support for Unicode characters.
 */
 .k-grid {
 font-family: "DejaVu Sans", "Arial", sans-serif;
 }
 </style>

 <script>
 // Import the DejaVu Sans font for embedding.

 // NOTE: Only required if the Kendo UI stylesheets are loaded
 // from a different origin, for example, kendo.cdn.telerik.com.
 kendo.pdf.defineFont({
 "DejaVu Sans" : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans.ttf",
 "DejaVu Sans|Bold" : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Bold.ttf",
 "DejaVu Sans|Bold|Italic" : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf",
 "DejaVu Sans|Italic" : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf"
 });
 </script>

 <!-- Load Pako ZLIB library to enable PDF compression -->
 <script src="https://unpkg.com/pako/dist/pako_deflate.min.js"></script>

 @(Html.Kendo().Grid<.ProductViewModel>()
 .Name("grid")
 .ToolBar(tools => tools.Pdf())
 .Pdf(pdf => pdf
 .AllPages()
)
 .DataSource(dataSource => dataSource
 .Ajax()
 .Read(read => read.Action("Products_Read", "Home"))
)
)

Exclude Column From Exporting

In some scenarios, you might want to hide given column or multiple columns from being exported. This can be achieved using the Exportable setting.

columns.Bound(p => p.ProductName).Exportable(false);

It can also be set in a detailed fashion containing different values for Excel and PDF exporting modes, providing separate options for each:

columns.Bound(p => p.ProductName).Exportable(x=> x.Pdf(true).Excel(false));

In some scenarios, you want to include columns instead of excluding them. You may have columns defined in the grid which are not displayed in View mode, but you'd like to show them in the exported file. In this case, setting .Exportable(true) will not work automatically. You can rather try using setting .Exportable(x=> x.Pdf(true).Excel(false)); specifically.

It is also important to understand the difference between .Hidden() and .Visible() properties of a grid column. The first one will hide the column only visually using CSS. The second one will cause the column not to be rendered at all.

Known Limitations

	All known limitations of the Kendo UI for jQuery HTML Drawing module apply.
	Exporting a hierarchical Grid is not supported.
	PDF export is not supported when the Grid has a locked (frozen) column enabled. If the algorithm decides to move a node to the next page, all DOM nodes that follow it will be also moved although there might be enough space for part of them on the current page.
	The built-in PDF export option of the Kendo UI Grid exports as many columns as it can fit on a page with a defined page size. If the columns do not fit, they will be cropped. If you need to support more columns that can be fit on a page, use the Kendo UI for jQuery side-to-side PDF export approach instead.

Further Reading

	Export tabular data as PDF in Kendo UI
	PDF output by the Kendo UI Drawing library
	Drawing DOM elements with the Kendo UI Drawing library
	Saving files with Kendo UI

See Also

	Server-Side API
	Rendering and Dimensions of the Grid component for ASP.NET MVC
	Adaptive Rendering of the Grid component for ASP.NET MVC

 In this article

 Related articles

 Not finding the help you need?

 Contact Support

	

 Improve this article

 Getting Started

 	Getting Started
	Demos
	Sample Applications

 Support Resources

 	Knowledge Base

 Community

 	Forums
	Blogs
	Feedback Portal

 Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates.
 All Rights Reserved.

 Progress, Telerik, and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

 	Terms of Use
	Privacy Center
	Security Center
	Trademarks
	License Agreements
	Code of Conduct
	Doc Copyright

 DO NOT SELL MY PERSONAL INFORMATION

