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        PDF Export


The UI for ASP.NET MVC Grid component provides a built-in PDF export functionality.


For a runnable example, refer to the demo on exporting the Grid to PDF.


With regard to its PDF export, the Grid enables you to:


	Export all its data to PDF
	Fit content to paper size
	Specify page templates
	Use server proxy
	Save files on the server
	Embed Unicode characters



Getting Started


To enable PDF export:


	Include the corresponding toolbar command and set the export settings.

	Toolbar configuration
	PDF export configuration



	Include the Pako Deflate library in the page to enable compression.




Starting with v2023.3.1115 the Pako library is no longer distributed with the rest of the Kendo UI for jQuery scripts. You must use one of the official distribution channels such as unpkg instead.




To initiate PDF export, press the Toolbar button or use the Grid client-side API and call the saveAsPdf method.



	By default, the Grid exports the current page of the data with sorting, filtering, grouping, and aggregates applied.
	The Grid uses the current column order, visibility, and dimensions to generate the PDF file.





The following example demonstrates how to enable the PDF export functionality of the Grid.


    <!-- Load Pako Deflate library to enable PDF compression -->
    <script src="https://unpkg.com/pako/dist/pako_deflate.min.js"></script>
    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .FileName("Kendo UI Grid Export.pdf")
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



Exporting All Pages


By default, the Grid exports only the current page of data. To export all pages, use the AllPages() method.



When the AllPages() method is used with and server paging (Ajax binding default), the Grid will make a "read" request for all data. If the data items are too many, the browser may become unresponsive. In such cases, use server-side export.




    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .AllPages()
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



Fitting Content to Paper Size


By default, the paper size of the exported document is determined by the size of the Grid on the screen. This implies that the document can contain pages with different dimensions if the size of the Grid is not uniform for each data page. For detailed information on the conversion from screen to document units, refer to the Kendo UI for jQuery article on dimensions and CSS units.


You can specify a paper size that will be applied to the whole document. The content will be scaled to fit the specified paper size. The automatic scale factor can be overridden, for example, to make room for additional page elements. To use all available space, the Grid will:


	Adjust the column widths to fill the page so try to avoid setting width on all columns.
	Vary the number of rows for each page, placing page breaks where appropriate.
	Omit the toolbar and the pager.




	To fit the Grid content to the paper size, all records have to be rendered at once.
	The exact maximum number of exportable rows will vary depending on the browser, system resources, template complexity, and other factors.
	A good practice is to verify your own worst-case scenarios in each browser you intend to support.





    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .AllPages()
            .Landscape()
            .PaperSize("A4")
            .Scale(0.75)
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



Specifying Page Templates


The Grid allows you to specify a page TemplateId and use the template to position the content, add headers, footers, and other elements. The styling of the exported document is done by using CSS. During the PDF export, the template is positioned in a container with the specified paper size.



To use a page template, you have to set the paper size.




The Grid supports the following page template variables:


	pageNumber
	
totalPages


    <style>
        body {
            font-family: "DejaVu Serif";
            font-size: 12px;
        }

        .page-template {
            position: absolute;
            width: 100%;
            height: 100%;
            top: 0;
            left: 0;
        }

        .page-template .header {
            position: absolute;
            top: 30px;
            left: 30px;
            right: 30px;

            border-bottom: 1px solid #888;

            text-align: center;
            font-size: 18px;
        }

        .page-template .footer {
            position: absolute;
            bottom: 30px;
            left: 30px;
            right: 30px;
        }
    </style>

    <script type="x/kendo-template" id="page-template">
        <div class="page-template">
            <div class="header">
                Acme Inc.
            </div>
            <div class="footer">
                <div style="float: right">Page #: pageNum # of #: totalPages #</div>
            </div>
        </div>
    </script>

    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .AllPages()
            .PaperSize("A4")
            .Margin("2cm", "1cm", "1cm", "1cm")
            .Landscape()
            .RepeatHeaders()
            .Scale(0.75)
            .TemplateId("page-template")
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )






Using Server Proxy


Internet Explorer 9 and Safari do not support the option for saving a file and require the implementation of a server proxy. To specify the server proxy URL, use the ProxyURL() method.


    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .AllPages()
            .ProxyURL("/MyProxy")
            .Landscape()
            .PaperSize("A4")
            .Scale(0.75)
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



Saving Files on the Server


To send the generated file to a remote service, use the ProxyURL() and ForceProxy() methods. If the proxy returns 204 No Content, no Save As... dialog will appear on the client.


    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .ForceProxy(true)
            .ProxyURL("/Pdf_Export_Save")
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



    [HttpPost]
    public ActionResult Pdf_Export_Save(string contentType, string base64, string fileName)
    {
        var fileContents = Convert.FromBase64String(base64);
        return File(fileContents, contentType, fileName);
    }



Embedding Unicode Characters


The default fonts in PDF files do not provide Unicode support. To support international characters, you have to embed an external font. For more information on the supported Deja Vu font family as part of the Kendo UI distributions and other fonts, refer to the Kendo UI for jQuery article on custom fonts and PDF.


The following example demonstrates how to handle custom fonts.


    <style>
        /*
            Use the DejaVu Sans font for display and embedding in the PDF file.
            The standard PDF fonts have no support for Unicode characters.
        */
        .k-grid {
            font-family: "DejaVu Sans", "Arial", sans-serif;
        }
    </style>

    <script>
        // Import the DejaVu Sans font for embedding.

        // NOTE: Only required if the Kendo UI stylesheets are loaded
        // from a different origin, for example, kendo.cdn.telerik.com.
        kendo.pdf.defineFont({
            "DejaVu Sans"             : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans.ttf",
            "DejaVu Sans|Bold"        : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Bold.ttf",
            "DejaVu Sans|Bold|Italic" : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf",
            "DejaVu Sans|Italic"      : "https://kendo.cdn.telerik.com/2022.3.1109/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf"
        });
    </script>

    <!-- Load Pako ZLIB library to enable PDF compression -->
    <script src="https://unpkg.com/pako/dist/pako_deflate.min.js"></script>

    @(Html.Kendo().Grid<.ProductViewModel>()
        .Name("grid")
        .ToolBar(tools => tools.Pdf())
        .Pdf(pdf => pdf
            .AllPages()
        )
        .DataSource(dataSource => dataSource
            .Ajax()
            .Read(read => read.Action("Products_Read", "Home"))
        )
    )



Exclude Column From Exporting


In some scenarios, you might want to hide given column or multiple columns from being exported. This can be achieved using the Exportable setting.


columns.Bound(p => p.ProductName).Exportable(false);



It can also be set in a detailed fashion containing different values for Excel and PDF exporting modes, providing separate options for each:


columns.Bound(p => p.ProductName).Exportable(x=> x.Pdf(true).Excel(false));



In some scenarios, you want to include columns instead of excluding them. You may have columns defined in the grid which are not displayed in View mode, but you'd like to show them in the exported file. In this case, setting .Exportable(true) will not work automatically. You can rather try using setting .Exportable(x=> x.Pdf(true).Excel(false)); specifically.


It is also important to understand the difference between .Hidden() and .Visible() properties of a grid column. The first one will hide the column only visually using CSS. The second one will cause the column not to be rendered at all.


Known Limitations


	All known limitations of the Kendo UI for jQuery HTML Drawing module apply.
	Exporting a hierarchical Grid is not supported.
	PDF export is not supported when the Grid has a locked (frozen) column enabled. If the algorithm decides to move a node to the next page, all DOM nodes that follow it will be also moved although there might be enough space for part of them on the current page.
	The built-in PDF export option of the Kendo UI Grid exports as many columns as it can fit on a page with a defined page size. If the columns do not fit, they will be cropped. If you need to support more columns that can be fit on a page, use the Kendo UI for jQuery side-to-side PDF export approach instead.



Further Reading


	Export tabular data as PDF in Kendo UI
	PDF output by the Kendo UI Drawing library
	Drawing DOM elements with the Kendo UI Drawing library
	Saving files with Kendo UI



See Also


	Server-Side API
	Rendering and Dimensions of the Grid component for ASP.NET MVC
	Adaptive Rendering of the Grid component for ASP.NET MVC
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