

skip navigation 	Telerik UI for Xamarin Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop

Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework

View all products

	Overview
	Demos
	Roadmap 	What's New
	Release History

	Migrate to .NET MAUI
	Docs & Support Support and Learning
	Support and Learning Hub
	First Steps
	Docs
	Demos
	Forums
	Videos
	Blogs
	Submit a Ticket

Productivity and Design Tools
	Visual Studio Extensions
	Embedded Reporting

	Pricing

	
	 Shopping cart
	
 Your Account 	Account Overview
	Your Licenses
	Downloads
	Support Center
	Forum Profile
	Payment Methods
	Edit Profile
	Log out

	 Login
	 Contact Us
	Try now

	
	

close mobile menu

 	
 Search in Documentation

	
 Search in Knowledge Base

	
 Search in API Reference

 	

 API Reference

	

 Xamarin Forms Controls / PdfViewer

 New to Telerik UI for Xamarin?
 Download free 30-day trial

 Key Features

The purpose of this help article is to show you the key features of the RadPdfViewer control.

Pdf Document Visualization

RadPdfViewer control enables you to visualize Pdf documents through the Source property of type Telerik.XamarinForms.PdfViewer.DocumentSource.

The Pdf Document could be loaded from:

	
RadFixedDocument - it is used to load the pdf document from a stream.

Using this approach you have more control over the loading process, for example, you could modify the document after it is imported and before it is assigned as a Source to the PdfViewer control. For more details check RadFixedDocument topic from RadPdfProcessing documentation.

Example:

private void ImportFixedDocument()
{
 Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.PdfFormatProvider provider = new Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.PdfFormatProvider();
 Assembly assembly = typeof(KeyFeatures).Assembly;
 string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdfviewer-overview.pdf"));
 using (Stream stream = assembly.GetManifestResourceStream(fileName))
 {
 RadFixedDocument document = provider.Import(stream);
 this.pdfViewer.Source = document;
 }
}

The example shows a pdf document visualized as an EmbeddedResource. This is one of the options for loading a pdf with the PdfViewer control.

	Uri

Uri uri = this.GetUri();
this.pdfViewer.Source = uri;

or

Uri uri = this.GetUri();
this.pdfViewer.Source = new UriDocumentSource(uri);

where GetUri() method returns a valid and accessible URL.

	
File - you can visualize the pdf document from a file located on a device (available since R1 2019 SP). You just need to pass the file path to the Source property of the PdfViewer control:

this.pdfViewer.Source = filePath;

where the filePath variable is a string that contains the path to the file location.

In order to make sure that the file exists on the device you could use the following code:

System.IO.File.OpenRead(filePath);

Please make sure that you have granted the app all the permissions needed before the resources are used. Otherwise, an error will be raised.

	Byte Array

byte[] bytes = this.GetBytes();
this.pdfViewer.Source = bytes;

or

byte[] bytes = this.GetBytes();
this.pdfViewer.Source = new ByteArrayDocumentSource(bytes, true);

	Stream

There are two ways:

Func<CancellationToken, Task<Stream>> streamFunc = ct => Task.Run(() =>
{
 Assembly assembly = typeof(KeyFeatures).Assembly;
 string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdfviewer-overview.pdf"));
 Stream stream = assembly.GetManifestResourceStream(fileName);
 return stream;
});
this.pdfViewer.Source = streamFunc;

or

Assembly assembly = typeof(KeyFeatures).Assembly;
string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdfviewer-overview.pdf"));
Stream stream = assembly.GetManifestResourceStream(fileName);
var streamDocumentSource = new StreamDocumentSource();
streamDocumentSource.Import(stream);
this.pdfViewer.Source = streamDocumentSource;

If you choose the second approach with StreamDocumentSource, please keep in mind the stream must stay open while the PdfViewer is in use, because the pdf import is ReadOnDemand. This means that you'd need to manually close the stream when no longer using the PdfViewer.

ReadOnDemand Loading

RadPdfViewer control provides ReadOnDemand loading of the Pdf document, which means that each page of the document is loaded dynamically when necessary (when needed to be shown in the PdfViewer) and it is unloaded once it becomes invisible. The stream that holds the document stays opened while the document is used in PdfViewer.

Document Reference

Through the Document property of RadPdfViewer you can get a reference to the RadFixedDocument imported by the DocumentSource. For more details check RadFixedDocument topic from RadPdfProcessing documentation.

Zoom Level Support

RadPdfViewer exposes properties for applying min and max zoom values.

	
MaxZoomLevel(double): Defines the maximum magnification factor at which content could be maximized. The default value is 3.0
	
MinZoomLevel(double): Defines the minimum magnification factor at which content could be minimized. The default value is 0.3

In order to check how these properties works you should set the ZoomIn and ZoomOut Commmands of the control. For more details please check the Commands article.

Viewing Modes

You could easily set one of the two layout modes that the control provides through its LayoutMode property.

The available options are:

	
ContinuousScroll: Displays pages in a continuous vertical column.
	
SinglePage: Displays one page at a time.

By default the PdfViewer LayoutMode property is set to ContinuousScroll.

The RadPdfViewer LayoutMode could be triggered through the ToggleLayoutModeCommand and the ToggleLayoutModeToolbarItem.

Here is how the PdfViewer looks when LayoutMode is set to ContinuousScroll:

And when the LayoutMode property is set to SinglePage:

Password-protected Pdf Document

Starting with R2 2020 release RadPdfViewer provides SourcePasswordNeeded event which is useful in cases you need to display a password-protected pdf document.

	
SourcePasswordNeeded: Occurs when a user password is needed to load the document in PdfViewer. The SourcePasswordNeeded event handler receives two parameters:

	The sender argument which is of type object, but can be cast to the RadPdfViewer type.
	A PasswordNeededEventArgs object which provides Password property used to supply the user password.

Here is a quick example of SourcePasswordNeeded event usage:

<telerikPdfViewer:RadPdfViewer x:Name="pdfViewer"
 SourcePasswordNeeded="pdfViewer_SourcePasswordNeeded" />

And add the event handler:

private void pdfViewer_SourcePasswordNeeded(object sender, Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.Import.PasswordNeededEventArgs e)
{
 e.Password = "my_user_password_here";
}

Page Spacing

	
PageSpacing(double): Defines the space between the pages of the Pdf Document. The default value is 20.0

PagesStart Index

	
VisiblePagesStartIndex(int): Defines the index at which the document will be displayed. The default value is 0.

Event when elements in the page are loaded

PdfViewer privdes an event that is raised when all elements in the page are loaded—PageElementsLoaded. Use this event to alter the page content before it is rendered. This event is raised on a background thread.
The PageElementsLoaded event handler receives two parameters:
 * sender—the PdfViewer control.
 * PageElementsLoadedEventArgs—object which has a reference to the Page(RadFixedPage).

Example

this.pdfViewer.PageElementsLoaded += OnPageElementsLoaded;

And the handler:

private void OnPageElementsLoaded(object sender, PageElementsLoadedEventArgs e)
{
 foreach (var item in e.Page.Content)
 {
 if (item is Telerik.Windows.Documents.Fixed.Model.Graphics.Path path)
 {
 if (path.StrokeThickness == 0)
 {
 path.StrokeThickness = 5;
 }
 }
 }
}

BusyIndicator Template

If the default busy template does not suit your needs, you could easily define a custom template through the following property:

	
BusyIndicatorTemplate(DataTemplate): Specifies the template visualized while the Pdf Document is loading.

Here is an example how the custom BusyIndicatorTemplate could be defined:

<telerikPdfViewer:RadPdfViewer x:Name="pdfViewer">
 <telerikPdfViewer:RadPdfViewer.BusyIndicatorTemplate>
 <DataTemplate>
 <telerikPrimitives:RadBusyIndicator AnimationType="Animation10"
 AnimationContentHeightRequest="100"
 AnimationContentWidthRequest="100"
 IsBusy="True" />
 </DataTemplate>
 </telerikPdfViewer:RadPdfViewer.BusyIndicatorTemplate>
</telerikPdfViewer:RadPdfViewer>

Here is how the BusyIndicator Template looks:

A sample BusyIndicatorTemplate example can be found in the PdfViewer/Features folder of the SDK Samples Browser application.

Example

Here is an example how the above RadPdfViewer features could be applied:

For the example we will visualize a pdf document from file embedded in the application with a BuildAction:EmbeddedResource.

Then add the following code to load the pdf document from Stream:

Func<CancellationToken, Task<Stream>> streamFunc = ct => Task.Run(() =>
{
 Assembly assembly = typeof(KeyFeatures).Assembly;
 string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdfviewer-overview.pdf"));
 Stream stream = assembly.GetManifestResourceStream(fileName);
 return stream;
});
this.pdfViewer.Source = streamFunc;

Finally, use the following snippet to declare a RadPdfViewer in XAML:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 </Grid.RowDefinitions>
 <telerikPdfViewer:RadPdfViewerToolbar PdfViewer="{Binding Source={x:Reference pdfViewer}}"
 IsScrollable="True">
 <telerikPdfViewer:ZoomInToolbarItem />
 <telerikPdfViewer:ZoomOutToolbarItem />
 <telerikPdfViewer:ToggleLayoutModeToolbarItem />
 </telerikPdfViewer:RadPdfViewerToolbar>
 <telerikPdfViewer:RadPdfViewer x:Name="pdfViewer"
 Grid.Row="1"
 PageSpacing="15"
 MinZoomLevel="0.2"
 MaxZoomLevel="5" />
</Grid>

and add the following namespace:

xmlns:telerikPrimitives="clr-namespace:Telerik.XamarinForms.Primitives;assembly=Telerik.XamarinForms.Primitives"

Where the telerikPdfViewer namespace is the following:

xmlns:telerikPdfViewer="clr-namespace:Telerik.XamarinForms.PdfViewer;assembly=Telerik.XamarinForms.PdfViewer"

A sample Key Features example can be found in the PdfViewer/Features folder of the SDK Samples Browser application.

See Also

	Commands
	PdfViewer Toolbar

 In this article

 Related articles

 Not finding the help you need?

 Contact Support

	

 Improve this article

 Sample Applications

 	Telerik Tagit
	iOS Demo App
	Android Demo App

 Support Resources

 	Xamarin.Forms SDK Examples

 Community

 	Forums
	Blogs
	Feedback Portal

 Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates.
 All Rights Reserved.

 Progress, Telerik, and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

 	Terms of Use
	Privacy Center
	Security Center
	Trademarks
	License Agreements
	Code of Conduct
	Doc Copyright

 DO NOT SELL MY PERSONAL INFORMATION

