

skip navigation 	Telerik Document Processing Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop

Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework

View all products

	Overview
	Docs & Support
	Pricing

	
	 Shopping cart
	
 Your Account 	Account Overview
	Your Licenses
	Downloads
	Support Center
	Forum Profile
	Payment Methods
	Edit Profile
	Log out

	 Login
	 Contact Us
	Try now

	
	

close mobile menu

 	
 Search in Documentation

	
 Search in Knowledge Base

	
 Search in API Reference

 	

 API Reference

	

 Available for: UI for ASP.NET MVC | UI for ASP.NET AJAX | UI for Blazor | UI for WPF | UI for WinForms | UI for Silverlight | UI for Xamarin | UI for WinUI | UI for ASP.NET Core | UI for .NET MAUI

 Libraries / RadPdfProcessing / Formats and Conversion / Pdf / PdfFormatProvider

 New to Telerik Document Processing?
 Download free 30-day trial

 Settings

PdfFormatProvider provides you with the ability to import/export PDF documents. Additionally, you can take advantage of the import/export settings that give you modification options.

Import Settings

You can specify the import settings you wish through the ImportSettings property of PdfFormatProvider.The available import settings are listed below:

ReadingMode

Gets or sets the mode for loading the document pages content on import.

	
ReadAllAtOnce: All document pages content will be loaded on import. This is the default behavior.
	
OnDemand: The document pages content will be loaded on demand. This mode is made for using with PdfViewers and only the currently visible page will be loaded.

Currently, the OnDemand mode should be applied for use with viewers only.

This property is available since R2 2020.

CopyStream

Gets or sets whether to copy the document stream on import. When false and ReadingMode is OnDemand, the original stream must be kept open while the document is in use. When true, the original stream can be disposed after import, regardless of the reading mode.

UserPasswordNeeded

The event is fired when a user password is needed to open the document. The password can be specified in the PasswordNeededEventArgs.Password property.

Example 1 shows how you can create a PdfImportSettings object and assign it to a PdfFormatProvider.

Example 1: Import settings with UserPasswordNeeded
PdfFormatProvider provider = new PdfFormatProvider();
PdfImportSettings settings = new PdfImportSettings();
settings.UserPasswordNeeded += (s, a) =>
{
 a.Password = "Us3rP4ssw0rd";
};

provider.ImportSettings = settings;

OwnerPasswordNeeded

The event is fired when an owner password is needed to open the document. The password can be specified in the PasswordNeededEventArgs.Password property.

Example 2: Import settings with OwnerPasswordNeeded
PdfFormatProvider provider = new PdfFormatProvider();
PdfImportSettings settings = new PdfImportSettings();
settings.OwnerPasswordNeeded += (s, a) =>
{
 a.Password = "Own3erP4ssw0rd";
};

provider.ImportSettings = settings;

DuplicatedEmbeddedFileNameResolving

The event is fired when trying to resolve conflicts between the embedded file names with the same names.

Example 3: Import settings with DuplicatedEmbeddedFileNameResolving
 PdfFormatProvider provider = new PdfFormatProvider();
 PdfImportSettings importSettings = new PdfImportSettings();
 importSettings.DuplicatedEmbeddedFileNameResolving += (s, a) =>
 {
 string myNewName = "2_" + a.Name;
 if (!a.UsedNames.Contains(myNewName))
 {
 a.NewName = myNewName;
 }
 };

 provider.ImportSettings = importSettings;

Export Settings

In order to modify the way content is exported, you can set the ExportSettings property of PdfFormatProvider. These are the modification options you can use:

ShouldEmbedFonts

This property controls if the fonts will be embedded in the file. The default value is true because by the PDF Standard the fonts should be embedded in the file. This means that by default the fonts are added which allows proper viewing on any device. If the fonts are not embedded and the file is viewed on a device that does not have the used fronts the font might be substituted.

IsEncrypted

This property specifies if the document should be encrypted. The default value is False. You can specify the encryption algorithm by setting the EncryptionType property. The supported values are AES256 and RC4

All passwords for revision 6 (AES-256) shall be based on Unicode. Preprocessing of a user-provided password consists first of normalizing its representation by applying the "SASLPrep" profile (Internet RFC 4013) of the "stringprep" algorithm (Internet RFC 3454) to the supplied password using the Normalize and BiDi options.

This setting is ignored when ComplianceLevel differs from None as PDF/A compliant documents do not allow encryption.

UserPassword

The password to be used if the document is encrypted. The default password is an empty string.

OwnerPassword

The password that governs permissions for operations such as printing, copying and modifying the document. The default password is an empty string.

UserAccessPermissions

This property specifies three types of user access permissions: PrintingPermissionType, ChangingPermissionType, and CopyingPermissionType. These settings are exported only if the PdfExportSettings.IsEncrypted property is set to true. Each has an available set of values, represented by the respective enumerations:

	
PrintingPermissionType: Sets the permissions for document printing. Possible values:

	
None: Specify no printing is allowed.
	
LowResolution: Specify low resolution (150 dpi) printing is allowed.
	
HighResolution: Specify printing on the highest resolution is allowed.

	
ChangingPermissionType: Sets the permissions for making changes to the document. Possible values:

	
None: Specify no document changes are allowed.
	
DocumentAssembly: Specify inserting, deleting, and rotating page changes are allowed.
	
FormFieldFillingOrSigning: Specify filling in form fields and signing existing signature fields changes are allowed.
	
FormFieldFillingOrSigningAndCommenting: Specify commenting, filling in form fields, and signing existing signature fields changes are allowed.
	
AnyExceptExtractingPages: Specify any changes except extracting pages are allowed.

	
CopyingPermissionType: Sets the permissions for document copying. Possible values:

	
None: Specify no copying is allowed.
	
Copying: Specify copying is allowed.
	
TextAccess: Specify that text access for screen reader devices for copying is allowed.
	
NumberingFieldsPrecisionLevel: Represents precision level when updating numbering fields. When the Normal option is selected the fields are updated once, not taking into account if their new values would have shifted the already measured layout. In such cases, the results could be outdated. This is the MS Word-like behavior. If you need more accurate results, use NumberingFieldsPrecisionLevel.High where the fields are updated until their values become more accurate. This precision level is more accurate than NumberingFieldsPrecisionLevel.Normal but requires more resources.

Example 4 shows how you can create a PdfExportSettings object with settings that specify an OwnerPassword and UserAccessPermissions.

Example 4: Export settings
PdfFormatProvider provider = new PdfFormatProvider();
PdfExportSettings settings = new PdfExportSettings();
settings.IsEncrypted = true;
settings.OwnerPassword = "0wn3rP4ssw0rd";
// The following permissions are exported only if the settings.IsEncrypted property is set to true
UserAccessPermissions permissions = new UserAccessPermissions
{
 Printing = PrintingPermissionType.HighResolution,
 Changing = ChangingPermissionType.AnyExceptExtractingPages,
 Copying = CopyingPermissionType.TextAccess,
};

settings.UserAccessPermissions = permissions;
provider.ExportSettings = settings;

ImageQuality

The ImageQuality property specifies the quality with which images are exported to PDF. More information about how it works is available in this article.

.NET Standard specification does not define APIs for converting images or scaling their quality. That is why to allow the library to export images different than Jpeg and Jpeg2000 or ImageQuality different than High, you will need to provide an implementation of the JpegImageConverterBase abstract class. This implementation should be passed to the JpegImageConverter property of the of FixedExtensibilityManager. For more information check the Cross-Platform Support help article.

ImageCompression

Sets the desired compression for the images when exporting. You can set one of the following values:

	
ImageFilterTypes.Default: The image compression will be preserved as it is in the original document.
	
ImageFilterTypes.None: The images won't be encoded.
	
ImageFilterTypes.FlateDecode: The images will be encoded with a FlateDecode filter. Compresses data using the zlib/deflate compression method.
	
ImageFilterTypes.DCTDecode: The images will be encoded with a DCTDecode filter. Compresses data using a DCT (discrete cosine transform) technique based on the JPEG standard.

Example 5 shows how you can create a PdfExportSettings object with settings for the image properties.

Example 5: Image settings

PdfFormatProvider provider = new PdfFormatProvider();
PdfExportSettings settings = new PdfExportSettings();
settings.ImageCompression = new ImageFilterTypes[] { ImageFilterTypes.FlateDecode };
settings.ImageQuality = ImageQuality.Medium;

provider.ExportSettings = settings;

StreamCompression

Gets or sets the content stream compression type. Possible Values are:

	
None: The content streams won't be encoded.
	
FlateDecode: Compresses data using the zlib/deflate compression method.

ComplianceLevel

Specifies the PDF/A compliance level. It can have one of the following values:

	
None: Specify no compliance level.
	
PdfA1B: Specify PDF/A-1b compliance level.
	
PdfA2B: Specify PDF/A-2b compliance level.
	
PdfA2U: Specify PDF/A-2u compliance level.
	
PdfA3B: Specify PDF/A-3b compliance level.
	
PdfA3U: Specify PDF/A-3u compliance level.

The default value is None. For more information on PDF/A compliance, check the PDF/A Compliance article.

Example 6 shows how you can create a PdfExportSettings object and assign it to a PdfFormatProvider.

Example 6: Export settings
PdfFormatProvider provider = new PdfFormatProvider();
PdfExportSettings settings = new PdfExportSettings();
settings.ComplianceLevel = PdfComplianceLevel.PdfA2B;
provider.ExportSettings = settings;

See Also

	PdfExportSettings API Reference
	How to Comply with PDF/A Standard

 In this article

 Related articles

 Not finding the help you need?

 Contact Support

	

 Improve this article

 Getting Started

 	Getting Started

 Support Resources

 	Documentation
	GitHub SDK Repository

 Community

 	Forums
	Blogs
	Document Processing Feedback Portal

 Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates.
 All Rights Reserved.

 Progress, Telerik, and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

 	Terms of Use
	Privacy Center
	Security Center
	Trademarks
	License Agreements
	Code of Conduct
	Doc Copyright

 DO NOT SELL MY PERSONAL INFORMATION

